正文
首页 知识大全

光谱仪应用(光谱仪的原理及应用)

发布时间:2023-05-10 17:00:02

星光电脑为您整理了光谱仪应用,还有光谱仪的原理及应用和光谱仪的作用和功能,下面一起来看红外光谱仪的原理及应用吧。

光谱仪应用

光谱仪的作用和功能

光谱仪是光信号的读取设备;可反应物质分子或原子级别的特征。光谱仪广泛应用于农业、天文学、汽车、生物、化学、涂料、色度测量、环境监测、膜工业、食品、印刷、造纸、拉曼光谱、半导体工业、成分检测、混色、匹配等领域。
在生物医学应用、荧光测量、宝石成分检测、氧浓度传感器、真空室镀膜过程监测、膜厚测量、led测量、发射光谱测量、紫外/可见吸收光谱测量、颜色测量等领域应用广泛。
红外光谱仪在使用过程中需要注意以下几个事项:1、注意要符合规定的环境条件来使用,值得相信的红外光谱仪厂家提醒要注意实验室的温度以及相对湿度都应该在标准范围以内,所用电源应配备有稳压装置和接地线。为了更好的把关这些条件,红外实验室的面积不要太大,能放得下必须的仪器设备即可,但室内一定要有除湿装置。
2、为防止仪器受潮而影响使用寿命,红外光谱仪商家强调红外实验室应经常保持干燥,即使仪器不用,也应每周开机至少两次,每次半天,同时开除湿机除湿。特别是梅雨季节,最好是能每天开除湿机。
3、使用红外光谱仪测定用样品应干燥,否则应在研细后置红外灯下烘几分钟使干燥。试样研好并具在模具中装好后,应与真空泵相连后抽真空至少2分钟,以使试样中的水分进一步被抽走,然后再加压到一定的标准后维持几分钟。
4、注意在使用红外光谱仪时,如供试品为盐酸盐,因考虑到在压片过程中可能出现的离子交换现象。红外光谱仪商家强调标准规定用氯化钾(也同溴化钾一样预处理后使用)代替溴化钾进行压片,但也可比较氯化钾压片和溴化钾压片后测得的光谱,如二者没有区别,则可使用溴化钾进行压片。

光谱仪的原理及应用

光谱仪的原理及应用如下:

原理:

光谱仪采用原子发射光谱学的分析原理,样品经过电弧或火花放电激发成原子蒸汽,蒸汽中原子或离子被激发后产生发射光谱,发射光谱经光导纤维进入光谱仪分光室色散成各光谱波段,根据每个元素发射波长范围。通过光电管测量每个元素的最佳谱线。

每种元素发射光谱谱线强度正比于样品中该元素含量,通过内部预制校正曲线可以测定含量,直接以百分比浓度显示。光谱仪是光纤技术的引入,使待测物脱离了样品池的限制,采样方式变得更为灵活,利用光纤探头把光谱仪器的样品光谱源引到光谱仪器。

以适应被测样品的复杂形状和位置。由光纤引入光信号还可使仪器内部与外界环境隔绝,可增强对恶劣环境(潮湿气候、强电场干扰、腐蚀性气体)的抵抗能力,保证了光谱仪的长期可靠运行,延长使用寿命。光谱仪以电荷耦合器件阵列作为检测器。

对光谱的扫描不必移动光栅,可进行瞬态采集,响应速度极快,并通过计算机实时输出。采用全息光栅作为分光器件,杂散光低,提高了测量精度。应用计算机技术,极大地提高了光谱仪的智能化处理能力。

应用:

光谱仪就是应用这些理论基础,结合电子、机械、控制及数据处理等多学科知识形成的元素成份定性、定量分析的测试仪器。

光谱仪作为一种常规的元素成份测试仪器,已经广泛应用于水泥工业,对水泥生料的化学成份进行分析,进而对生产过程进行控制,确保了水泥生产的质量要求。

光谱仪是干什么用的

光谱仪又称分光仪,以光电倍增管等光探测器在不同波长位置,测量谱线强度的装置。其构造由一个入射狭缝,一个色散系统,一个成像系统和一个或多个出射狭缝组成。以色散元件将辐射源的电磁辐射分离出所需要的波长或波长区域,并在选定的波长上(或扫描某一波段)进行强度测定。分为单色仪和多色仪两种。

光谱仪又称分光仪,以光电倍增管等光探测器在不同波长位置,测量谱线强度的装置。其构造由一个入射狭缝,一个色散系统,一个成像系统和一个或多个出射狭缝组成。以色散元件将辐射源的电磁辐射分离出所需要的波长或波长区域,并在选定的波长上(或扫描某一波段)进行强度测定。分为单色仪和多色仪两种。广泛应用于冶金、铸造、机械、金属加工、汽车制造、有色、航空航天、兵器、化工等领域的生产过程控制,中心实验室成品检验等,可用于fe、al、cu、ni、co、mg、ti、zn、pb等多种金属及其合金样品分析。可对片状、块状以及棒状的固体样品中的非金属元素(c、p、s、b等)以及金属元素进行准确定量分析。

红外光谱仪的原理及应用

红外光谱仪的原理:

傅立叶变换红外光谱仪被称为第三代红外光谱仪,利用麦克尔逊干涉仪将两束光程差按一定速度变化的复色红外光相互干涉,形成干涉光,再与样品作用。探测器将得到的干涉信号送入到计算机进行傅立叶变化的数学处理,把干涉图还原成光谱图。

红外光谱仪的应用:

应用于染织工业、环境科学、生物学、材料科学、高分子化学、催化、煤结构研究、石油工业、生物医学、生物化学、药学、无机和配位化学基础研究、半导体材料、日用化工等研究领域。

红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。

分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。

由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。

分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库。

人们只需把测得未知物的红外光谱与标准库中的光谱进行比对,就可以迅速判定未知化合物的成份。

进行化合物的鉴定 进行未知化合物的结构分析。

进行化合物的定量分析 进行化学反应动力学、晶变、相变、材料拉伸与结构的瞬变关系研究。

工业流程与大气污染的连续检测。

在煤炭行业对游离二氧化硅的监测。

卫生检疫,制药,食品,环保,公安,石油, 化工,光学镀膜,光通信,材料科学等诸多领域珠宝行业的检测。

水晶石英羟基的测量、聚合物的成分分析、药物分析......

光谱法的仪器有哪几部分组成?它们的作用是什么?

一台典型的光谱仪主要由一个光学平台和一个检测系统组成。包括以下几个主要部分:

1、入射狭缝: 在入射光的照射下形成光谱仪成像系统的物点。

2、准直元件: 使狭缝发出的光线变为平行光。该准直元件可以是一独立的透镜、反射镜、或直接集成在色散元件上,如凹面光栅光谱仪中的凹面光栅。

3、色散元件: 通常采用光栅,使光信号在空间上按波长分散成为多条光束。

4、聚焦元件: 聚焦色散后的光束,使其在焦平面上形成一系列入射狭缝的像,其中每一像点对应于一特定波长。

5、探测器阵列:放置于焦平面,用于测量各波长像点的光强度。该探测器阵列可以是CCD阵列或其它种类的光探测器阵列。

扩展资料

1、光谱仪的分类:

光谱仪的种类很多,分类方法也很多,根据光谱仪所采用的分解光谱的原理,可以将其分成两大类:经典光谱仪和新型光谱仪。经典光谱仪是建立在空间色散(分光)原理上的仪器;新型光谱仪是建立在调制原理上的仪器,故又称为调制光谱仪。

经典光谱仪依据其色散原理可将仪器分为:棱镜光谱仪、衍射光栅光谱仪、干涉光谱仪。

2、光谱仪的应用:

光谱仪应用很广,在农业、天文、汽车、生物、化学、镀膜、色度计量、环境检测、薄膜工业、食品、印刷、造纸、生物医学应用、荧光测量、宝石成分检测、氧浓度传感器、真空室镀膜过程监控、薄膜厚度测量、LED测量、发射光谱测量、紫外/可见吸收光谱测量、颜色测量等领域应用广泛。

参考资料来源:百度百科-光谱仪

0

猜你喜欢