正文
首页 知识大全

光谱仪类型(什么是光谱仪)

发布时间:2023-05-23 07:36:02

星光电脑为您整理了光谱仪类型,还有什么是光谱仪和光谱仪的种类,下面一起来看红外光谱仪的种类和工作原理是什么吧。

光谱仪类型

光谱仪的种类

光谱仪有多种,总结起来(以大的类别),用得较多的是原子发射/吸收光谱仪、X射线荧光光谱仪。前者是精确定量分析用的,而后者是定性或半定量用。但前者使用成本很高,后者较低。
在X射线荧光光谱仪中,较好的是岛津的。

什么是光谱仪

光谱仪又称分光仪,广泛为认知的为直读光谱仪。以光电倍增管等光探测器测量谱线不同波长位置强度的装置。它由一个入射狭缝,一个色散系统,一个成像系统和一个或多个出射狭缝组成。以色散元件将辐射源的电磁辐射分离出所需要的波长或波长区域,并在选定的波长上(或扫描某一波段)进行强度测定。分为单色仪和多色仪两种。

扩展资料:

将复色光分离成光谱的光学仪器。光谱仪有多种类型,除在可见光波段使用的光谱仪外,还有红外光谱仪和紫外光谱仪。

按色散元件的不同可分为棱镜光谱仪、光栅光谱仪和干涉光谱仪等。按探测方法分,有直接用眼观察的分光镜,用感光片记录的摄谱仪,以及用光电或热电元件探测光谱的分光光度计等。单色仪是通过狭缝只输出单色谱线的光谱仪器,常与其他分析仪器配合使用。

光谱分析仪器原理

光谱分析仪器是一种辐射光谱,能够用来测量发光体的一些指标参数,这种仪器使用比较普遍。一般情况下有两种类型,经典类型的、新型的。经典类型的光谱分析仪和新型的光谱分析仪的工作原理是不同的,前者根据的是色散原理,后者根据的是调制原理。


光谱分析仪器不是一个仪器,而是多种仪器的一个综合,其中包括棱镜光谱仪、衍射的光栅光谱仪、干涉的光谱仪。近几年来,随着科学技术的发展,这方面的仪器也有了很大的改进。多种新型的仪器也开始陆续出现。例如光学多道分析仪,这种仪器在工作的过程中要使用到很多方面的技术,包括光子探测器、计算机操纵控制等等。这种光谱分析仪算是比较高级的仪器,能够进行多种工作,如计算、信息的采集、存储等。


光谱分析仪器的工作原理是非常复杂的,包括分析原理和物理原理。它的分析原理是根据反射物体反映的一些光谱信息,并且此时基态原子会吸收一些元素,然后观察其中的光谱减弱的程度,就可以知道元素有多少了。


除了一些分析原理之外,它还会依据一些物理原理,例如元素自身的构成,由于元素中电子的能量不同,所以它们的分布也会有所差别,并且能级也是不同的,所以原子核的能级是可以变化的。一般情况下,原子都会处在能级最低的状态,电子也会在能量技术比较低的轨道上运行。

如果是处在能量比较高的状态下的话,电子整个的状态是不太稳定的,所以随时会发生改变,并且很快就会返回到正常状态,也就是基态。此时不仅状态改变了,电子自身的能量也会释放一部分,并且是以光的形式,这就是原子在发射光谱的整个过程。所以光谱分析仪就可以利用这个过程来进行分析。

光谱分析仪工作的时候是基于一定的光学现象的,通过对这些现象的调查,来实现对于元素的研究。这些光学现象一般会有六种,分别是吸收、荧光、散射、发射、磷光、化学发光等等。各种光谱分析仪虽然在某些方面的性能会有所差别,但是它们基本的构成部分都是大同小异的,都有光源、单色器、检测器等构成部分。

土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:【https://www.to8to.com/yezhu/zxbj-cszy.php?to8to_from=seo_zhidao_m_jiare&wb】,就能免费领取哦~

红外光谱仪的种类和工作原理是什么?

楼主,您好。红外光谱仪的种类有: ①棱镜和光栅光谱仪。属于色散型,它的单色器为棱镜或光栅,属单通道测量。②傅里叶变换红外光谱仪。它是非色散型的,其核心部分是一台双光束干涉仪。当仪器中的动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测器所测得的光强也随之变化,从而得到干涉图。经过傅里叶变换的数学运算后,就可得到入射光的光谱。这种仪器的优点:①多通道测量,使信噪比提高。 ②光通量高,提高了仪器的灵敏度。③波数值的精确度可达0.01厘米-1。④增加动镜移动距离,可使分辨本领提高。⑤工作波段可从可见区延伸到毫米区,可以实现远红外光谱的测定。
近红外光谱仪种类繁多,根据不用的角度有多种分类方法。
从应用的角度分类,可以分为在线过程监测仪器、专用仪器和通用仪器。从仪器获得的光谱信息来看,有只测定几个波长的专用仪器,也有可以测定整个近红外谱区的研究型仪器;有的专用于测定短波段的近红外光谱,也有的适用于测定长波段的近红外光谱。较为常用的分类模式是依据仪器的分光形式进行的分类,可分为滤光片型、色散型(光栅、棱镜)、傅里叶变换型等类型。下面分别加以叙述。
二、滤光片型近红外光谱仪器:
滤光片型近红外光谱仪器以滤光片作为分光系统,即采用滤光片作为单色光器件。滤光片型近红外光谱仪器可分为固定式滤光片和可调式滤光片两种形式,其中固定滤光片型的仪器时近红外光谱仪最早的设计形式。
仪器工作时,由光源发出的光通过滤光片后得到一宽带的单色光,与样品作用后到达检测器。
该类型仪器优点是:仪器的体积小,可以作为专用的便携仪器;制造成本低,适于大面积推广。
该类型仪器缺点是:单色光的谱带较宽,波长分辨率差;对温湿度较为敏感;得不到连续光谱;不能对谱图进行预处理,得到的信息量少。故只能作为较低档的专用仪器。
三、色散型近红外光谱仪器:
色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的测样器件进行投射或反射分析。
该类型仪器的优点:是使用扫描型近红外光谱仪可对样品进行全谱扫描,扫描的重复性和分辨率叫滤光片型仪器有很大程度的提高,个别高端的色散型近红外光谱仪还可以作为研究级的仪器使用。化学计量学在近红外中的应用时现代近红外分析的特征之一。采用全谱分析,可以从近红外谱图中提取大量的有用信息;通过合理的计量学方法将光谱数据与训练集样品的性质(组成、特性数据)相关联可得到相应的校正模型;进而预测未知样品的性质。
该类型仪器的缺点:是光栅或反光镜的机械轴承长时间连续使用容易磨损,影响波长的精度和重现性;由于机械部件较多,仪器的抗震性能较差;图谱容易受到杂散光的干扰;扫描速度较慢,扩展性能差。由于使用外部标准样品校正仪器,其分辨率、信噪比等指标虽然比滤光片型仪器有了很大的提高,但与傅里叶型仪器相比仍有质的区别。
四、傅里叶变换型近红外光谱仪器:
傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。其基本组成包括五部分:①分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品 信息的分析光;②以传统的麦克尔逊干涉仪为代表的干涉仪,以及以后的各类改进型干涉仪,其作用是使光源发出的光分为两束后,造成一定的光程差,用以产生空间(时间)域中表达的分析光,即干涉光;③检测器,用以检测干涉光;④采样系统,通过数模转换器把检测器检测到的干涉光数字化,并导入计算机系统;⑤计算机系统和显示器,将样品干涉光函数和光源干涉光函数分别经傅里叶变换为强度俺频率分布图,二者的比值即样品的近红外图谱,并在显示器中显示。
在傅里叶变换近红外光谱仪器中,干涉仪是仪器的心脏,它的好坏直接影响到仪器的心梗,因此有必要了解传统的麦克尔逊干涉仪以及改进后的干涉仪的工作原理。
⑴传统的麦克尔逊(Michelson)干涉仪:传统的麦克尔逊干涉仪系统包括两个互成90度角的平面镜、光学分束器、光源和检测器。平面镜中一个固定不动的为定镜,一个沿图示方向平行移动的为动镜。动镜在运动过程中应时刻与定镜保持90度角。为了减小摩擦,防止振动,通常把动镜固定在空气轴承上移动。光学分束器具有半透明性质,放于动镜和定镜之间并和它们成45度角,使入射的单色光50%透过,50%反射,使得从光源射出的一束光在分束器被分成两束:反射光A和透射光B。A光束垂直射到定镜上;在那儿被反射,沿原光路返回分束器;其中一半透过分束器射向检测器,而另一半则被反射回光源。B光束以相同的方式穿过分束器射到动镜上;在那儿同样被反射,沿原光路返回分束器;再被分束器反射,与A光束一样射向检测器,而以另一半则透过分束器返回原光路。A、B两束光在此会合,形成为具有干涉光特性的相干光;当动镜移动到不同位置时,即能得到不同光程差的干涉光强。
⑵改进的干涉仪:干涉仪是傅里叶光谱仪最重要的部件,它的性能好坏决定了傅里叶光谱仪的质量,在经典的麦克尔逊干涉仪的基础上,近年来在提高光通量、增加稳定性和抗震性、简化仪器结构等方面有不少改进。
五、传统的麦克尔逊干涉仪工作过程中,当动镜移动时,难免会存在一定程度上的摆动,使得两个平面镜互不垂直,导致入射光不能直射入动镜或反射光线偏离原入射光的方向,从而得不到与入射光平行的反射光,影响干涉光的质量。外界的振动也会产生相同的影响。因此经典的干涉仪除需经十分精确的调整外,还要在使用过程中避免振动,以保持动镜精确的垂直定镜,获得良好的光谱图。为提高仪器的抗振能力,Bruker公司开发出三维立体平面角镜干涉仪,采用两个三维立体平面角镜作为动镜,通过安装在一个双摆动装置质量中心处的无摩擦轴承,将两个立体平面角镜连接。
三维立体平面角镜干涉仪的实质是用立体平面角镜代替了传统干涉仪两干臂上的平面反光镜。由立体角镜的光学原理可知,当其反射面之间有微小的垂直度误差及立体角镜沿轴方向发生较小的摆动时,反射光的方向不会发生改变,仍能够严格地按与入射光线平行的方向射出。由此可以看出,采用三维立体角镜后,可以有效地消除动镜在运动过程中因摆动、外部振动或倾斜等因素引起的附加光程差,从而提高了一起的抗振能力。详情请参考国家标准物质网www.rmhot.com

电感耦合等离子体发射光谱仪类型

进行光谱分析的仪器设备主要由光源、分光系统(光谱仪)及观测系统三部分组成。简单地说,就是把试样引入激发光源,使其原子化、激发和电离,辐射出特征光谱,然后用分光系统使光辐射色散,最后将形成的光谱通过相板或转换为电信号进行强度测量。

ICP光谱仪可分为几类,即摄谱仪、多通道光电直读光量计和顺序扫描单色仪。近年来最流行的ICP光谱仪则为采用固体检测器的全谱直读光谱仪。

(1)摄谱型等离子发射光谱仪

采用相板记录的商品ICP摄谱仪并不多,我国目前仍在使用此类仪器。如北京光学仪器厂的WP-2L型ICP-D型摄谱仪、北京第二光学仪器厂的WPl-G型ICP摄谱仪,及许多自行组装的ICP光谱仪。

(2)多通道光电直读等离子发射光谱仪

此种光谱仪为固定狭缝多通道式,即在光谱仪的焦面上按欲测元素所选用光谱线出现的位置安装许多固定出射狭缝和相应的检测器(如光电倍增管),同时接收来自试样的多个元素的分析信号,多通道仪器的通道数目可多达60道以上。多通道ICP光谱仪具有很高的分析效率和很好的分析精密度,是一种同时多元素快速测定的方法,适用于大批量试样分析。缺点是通道数目有限且固定,灵活性差,不能灵活选择测定元素,也难以根据试样的基体和待测元素的含量选择干扰少或不同灵敏度的适用谱线。

(3)顺序扫描型等离子发射光谱仪

顺序单道扫描仪相当于出射狭缝和电子倍增管在光谱仪的焦面上移动扫描或光栅转动扫描,顺序检测不同波长的谱线。此种方式具有较大的灵活性,可以根据试样特点和元素含量灵活选择谱线进行顺序多元素分析。其缺点是测定元素多时,分析速度慢,消耗试样溶液多,且精密度较差。

(4)多通道与顺序扫描单色仪结合型等离子发射光谱仪

鉴于上述两种类型的仪器均有其各自的优缺点,可在多通道仪器的基础上附加一个单色仪,以在一定程度上弥补各自的缺陷。

(5)全谱直读型等离子发射光谱仪

全谱直读型ICP-AES运用了现代微电子学、光电子学和计算机领域的最新成果,推出了以中阶梯光栅二维色散与固态检测器相结合的新型仪器,实现了ICP-AES的一次革命性飞跃。用几十万至上百万像元(CCD或CID)组成的检测器,实现了高信息量的二维全谱检测,集经典的摄谱仪、多道光量计和单道扫描光谱仪的优点于一身,可以采集全谱图照片,将试样中存在的所有元素的原子发射光谱信息同时记录下来,得到试样的“指纹”信息,以便日后对某些元素的复杂情况进行重新研究或探讨尚未分析的元素,还可以灵活选择谱线,考察谱图,在一次读谱中,可同时精确地读出一个元素的多条谱线,通过不同谱线的测定结果判断有无谱线的干扰,灵活选择最佳谱线。另外,可通过采用不同强度的谱线来分析试样中不同含量的元素,实现更宽的线性动态范围;方便地进行背景和干扰校正,适用于不同类型的试样;利用谱线差减,直接比较试样之间的差别,发现尚未分析的元素;测定精密度高,分析速度快,效率高,适用于大批量试样分析;方便与流动注射分析(FIA)或液相色谱等技术联用,测量瞬态信号。

0

猜你喜欢