正文
首页 知识大全

图解数据结构(图解数据结构与算法)

发布时间:2023-06-28 12:00:03

图解数据结构很多人对这个问题比较感兴趣,下面让我们一起来看数据结构之二叉树详解,希望可以帮助到你。

图解数据结构

数据结构之二叉树详解

1 定义

2 前序遍历(根左右)

前序遍历通俗的说就是从二叉树的根结点出发,当第一次到达结点时就输出结点数据,按照先向左在向右的方向访问。

图3.13所示二叉树访问如下:

则3.13所示二叉树的前序遍历输出为:
ABDHIEJCFG

3 中序遍历(左根右)

中序遍历就是从二叉树的根结点出发,当第二次到达结点时就输出结点数据,按照先向左在向右的方向访问。

图3.13所示二叉树中序访问如下:

则3.13所示二叉树的中序遍历输出为:
HDIBJEAFCG

4 后序遍历(左右根)

后序遍历就是从二叉树的根结点出发,当第三次到达结点时就输出结点数据,按照先向左在向右的方向访问。

图3.13所示二叉树后序访问如下:

则图3.13所示二叉树的后序遍历输出为:
HIDJEBFGCA

1 定义

2 图解实例

选取一个节点为参照根节点,会发现所有的左侧子节点小于等于参照点,右侧大于等于参照点。

比如根节点9, 9所有的左侧子节点(5、2、7、1、3)都小于等于9.

比如根节点13,13所有的左侧子节点(11、10、12)都大于等于13.

3 查找

查找节点 10:根节点9开始,10>9 右侧,10<13 左侧,10<11 左侧,找到10.

下图是二叉查找树的极端情况

二叉查找树就是为了提高查询效率,而当前这种和我们写了一堆for循环是一样的。
为了应对这种情况:又出现了平衡二叉树--红黑树。后面会提到。

1 定义

红黑树的特性:
(1)每个节点或者是黑色,或者是红色。
(2)根节点是黑色。
(3)每个叶子节点(NIL)是黑色。 [注意:这里叶子节点,是指为空(NIL或NULL)的叶子节点!]
(4)如果一个节点是红色的,则它的子节点必须是黑色的。也就是不能有连在一起的红色节点,但是可以有连在一起的黑色节点
(5)满足所有的二叉查找树的性质

红黑树示意图如下:

2 变换规则

左旋又分为两种情况,

(1)我们操作的结点E是整棵树的根节点,那么左旋实现为下面步骤

(2)我们操作的结点E有父结点,那么左旋实现为下面步骤

3)右旋

右旋同样分为两种情况,与左旋情况类似,故实际操作参考左旋。

3 插入

注意:上述描述中一个很重要的点是,在插入元素时,是将元素作为叶子结点插入的,插入到原红黑树的外部结点。

插入结点染色情况

插入结点后调整和平衡过程

1.变颜色的情况: 当前结点的父亲是红色,且它的祖父结点的另一个结点(也就是叔叔结点)也是红色:

2.左旋:当前父结点是红色,叔叔结点是黑色的时候,且当前的结点时右子树,则进行左旋。左旋过程不需要进行颜色变换。

3.右旋:当前父结点时红色,叔叔结点是黑色的时候,且当前的结点是左子树,则进行右旋。右旋过程中需要进行颜色变换,具体右旋过程如下。

实例讲解

参考视频:
https://www.bilibili.com/video/BV1tE411f7tP?p=4&spm_id_from=pageDriver

数据分析师必须掌握的数据结构有哪些?

【导读】对于数据分析工程师来说,数据结构是必知必会的,是数据分析师基础学习的部分,在进行数据结构学习的时候,是绕不过的一个基础,那么数据分析师必须掌握的数据结构有哪些?今天我们要推荐的就是一份能够帮助大家学好数据结构的书单,赶紧学起来吧!

1、大话数据结构

《大话数据结构》为超级畅销书《大话设计模式》作者程杰潜心三年推出的扛鼎之作!以一个计算机教师教学为场景,讲解数据结构和相关算法的知识。

通篇以一种趣味方式来叙述,大量引用了各种各样的生活知识来类比,并充分运用图形语言来体现抽象内容,对数据结构所涉及到的一些经典算法做到逐行分析、多算法比较。与市场上的同类数据结构图书相比,本书内容趣味易读,算法讲解细致深刻,是一本非常适合自学的读物。

2、趣学数据结构

本书基于C++语言编写,从趣味故事引入算法复杂性计算及数据结构基础内容,涵盖线性结构、树形结构和图形结构,包括链表、栈和队列、树和图的应用等。本书内容还涉及数据结构的基本应用(包括各种查找、排序等)和高级应用(包括优先队列、并查集、B-树、B+树和红黑树等)。

通过大量图解将抽象数据模型简单通俗化,语言表述浅显易懂,并结合有趣的实例帮助读者轻松掌握数据结构。

3、Python数据结构与算法分析

了解数据结构与算法是透彻理解计算机科学的前提。随着Python日益广泛的应用,Python程序员需要实现与传统的面向对象编程语言相似的数据结构与算法。

本书是用Python描述数据结构与算法的开山之作,汇聚了作者多年的实战经验,向读者透彻讲解在Python环境下,如何通过一系列存储机制高效地实现各类算法。通过本书,读者将深刻理解Python数据结构、递归、搜索、排序、树与图的应用,等等。

4、图解数据结构:使用 C++(其他语言版本也有)

这是一本以C++程序语言实战来解说数据结构概念的教材。全书内容浅显易懂,利用大量且丰富的图示与范例,详解复杂的抽象理论,从最基本的数据结构概念开始说明,再以C++工具加以诠释阵列结构、堆栈、链表、队列、排序、查找等重要的概念,引领读者抓住重点轻松进入数据结构的学习领域。

《图解数据结构:使用C++》内容架构完整,逻辑清楚,采用丰富的图例来阐述基本概念及应用,有效提升可读性。以C++程序语言实现数据结构中的重要理论,以范例程序说明数据结构的内涵。强调边做边学,结合下载文件,给予最完整的支援。

在进行数据结构学习的时候,以上分享的数据结构的书单,大家可以有效利用起来,希望对大家有所帮助,另外,数据分析师是近几年针对大学生的新兴职业,所以对于大学生就业是很有帮助的,如果大家想要在这方面有所发展,不妨去努力学习一下,了解一下数据分析师的日常工作,考一个相关的证书。

满二叉树和完全二叉树的区别图解

满二叉树和完全二叉树的区别图解,如下所示:

完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。

对于满二叉树,除最后一层无任何子节点外,每一层上的所有结点都有两个子结点二叉树。而完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。

满二叉树定义:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是(2^k) -1 ,则它就是满二叉树。

完全二叉树定义:若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。

数据结构到底难在哪里?

(1)无法接受它的描述方式。数据结构的描述大多是抽象的形式,我们习惯了使用自然语言表达,难以接受数据结构的抽象表达。不止一个学生问我,书上的“ElemType”到底是什么类型?运行时怎么经常提示错误。它的意思就是“元素类型”,只是这样来描述,你需要什么类型就写什么类型,例如int。这样的表达方式会让不少人感到崩溃。
(2)不知道它有什么用处。尽管很多人学习数据结构,但目的各不相同。有的人是应付考试,有的人是参加算法竞赛需要,而很多人不太清楚学习数据结构有什么用处,迷迷糊糊看书、做题、考试。
(3)体会不到其中的妙处。由于教材、教师等各种因素影响,很多学生没有体会到数据结构处理数据的妙处,经常为学不会而焦头烂额,学习重在体会其中的乐趣,有乐趣才有兴趣,兴趣是最好的驱动力。

0

猜你喜欢