显示器的工作原理很多人对这个问题比较感兴趣,下面让我们一起来看液晶显示器原理是什么,希望可以帮助到你。
液晶显示器原理是什么?
液晶的物理特性
液晶是这样一种有机化合物, 在常温条件下,呈现出既有液体的流动性,又有晶体的光学各向异性,因而称为“液晶”.在电场、磁场、温度、应力等外部条件的影响下,其分子容易发生再排列,使液晶的各种光学性质随之发生变化,液晶这种各向异性及其分子排列易受外加电场、磁场的控制.正是利用这一液晶的物理基础,即液晶的“电-光效应”,实现光被电信号调制,从而制成液晶显示器件.在不同电流电场作用下,液晶分子会做规则旋转90度排列,产生透光度的差别,如此在电源ON/OFF下产生明暗的区别,依此原理控制每个像素,便可构成所需图像.
液晶的物理特性是:当通电时导通,排列变的有秩序,使光线容易通过;不通电时排列混乱,阻止光线通过。让液晶如闸门般地阻隔或让光线穿透。从技术上简单地说,液晶面板包含了两片相当精致的无钠玻璃素材,称为Substrates,中间夹著一层液晶。当光束通过这层液晶时,液晶本身会排排站立或扭转呈不规则状,因而阻隔或使光束顺利通过。大多数液晶都属于有机复合物,由长棒状的分子构成。在自然状态下,这些棒状分子的长轴大致平行。将液晶倒入一个经精良加工的开槽平面,液晶分子会顺着槽排列,所以假如那些槽非常平行,则各分子也是完全平行的。
·单色液晶显示器的原理
LCD技术是把液晶灌入两个列有细槽的平面之间。这两个平面上的槽互相垂直(相交成90度)。也就是说,若一个平面上的分子南北向排列,则另一平面上的分子东西向排列,而位于两个平面之间的分子被强迫进入一种90度扭转的状态。由于光线顺着分子的排列方向传播,所以光线经过液晶时也被扭转90度。当液晶上加一个电压时,液晶分子便会转动,改变光透过率,从而实现多灰阶显示。
LCD是依赖极化滤光器(片)和光线本身。自然光线是朝四面八方随机发散的。极化滤光器实际是一系列越来越细的平行线。这些线形成一张网,阻断不与这些线平行的所有光线。极化滤光器的线正好与第一个垂直,所以能完全阻断那些已经极化的光线。只有两个滤光器的线完全平行,或者光线本身已扭转到与第二个极化滤光器相匹配,光线才得以穿透。
LCD正是由这样两个相互垂直的极化滤光器构成,所以在正常情况下应该阻断所有试图穿透的光线。但是,由于两个滤光器之间充满了扭曲液晶,所以在光线穿出第一个滤光器后,会被液晶分子扭转90度,最后从第二个滤光器中穿出。
从液晶显示器的结构来看,无论是笔记本电脑还是桌面系统,采用的LCD显示屏都是由不同部分组成的分层结构。LCD由两块玻璃板构成,厚度规格有0.7mm,0.63mm,0.5mm(也可以通过物理或者化学减薄的方式做到更薄),其间由包含有液晶(LC)材料的3~5μm均匀间隔隔开。因为液晶材料本身并不发光,所以需要给显示屏配置额外的光源,在液晶显示屏背面有一块导光板(或称匀光板)和反光膜,导光板的主要作用是将线光源或者点光源转化为垂直于显示平面的面光源。背光源发出的光线在穿过第一层偏振过滤层之后进入液晶层。液晶层中的水晶液滴都被包含在细小的单元格结构中,一个或多个单元格构成屏幕上的一个像素。在玻璃板与液晶材料之间是透明的电极,电极分为行和列,在行与列的交叉点上,通过改变电压而改变液晶的旋光状态,液晶材料的作用类似于一个个小的光阀。在液晶材料周边是控制电路部分和驱动电路部分。当LCD中的电极产生电场时,液晶分子就会产生扭曲,从而将穿越其中的光线进行有规则的折射,然后经过第二层幕上显示出来。
·彩色LCD显示器的工作原理
对于笔记本电脑或者桌面型的LCD显示器需要采用的更加复杂的彩色显示器而言,还要具备专门处理彩色显示的色彩过滤层。通常,在彩色LCD面板中,每一个像素都是由三个液晶单元格构成,其中每一个单元格前面都分别有红色,绿色,或蓝色的过滤器。这样,通过不同单元格的光线就可以在屏幕上显示出不同的颜色。
LCD克服了CRT体积庞大、耗电和闪烁的缺点,但也同时带来了造价过高、视角不广以及彩色显示不理想等问题。CRT显示可选择一系列分辨率,而且能按屏幕要求加以调整,但LCD屏只含有固定数量的液晶单元,只能在全屏幕使用一种分辨率显示(每个单元就是一个像素)。
CRT通常有三个电子枪,射出的电子流必须精确聚集,否则就得不到清晰的图像显示。但LCD不存在聚焦问题,因为每个液晶单元都是单独开关的。这正是同样一幅图在LCD屏幕上为什么如此清晰的原因。LCD也不必关心刷新频率和闪烁,液晶单元要么开,要么关,所以在40~60Hz这样的低刷新频率下显示的图像不会比75Hz下显示的图像更闪烁。不过,LCD屏的液晶单元会很容易出现瑕疵。对1024×768的屏幕来说,每个像素都由三个单元构成,分别负责红、绿和蓝色的显示一所以总共约需240万个单元(1024×768×3=2359296)。很难保证所有这些单元都完好无损。最有可能的是,其中一部分已经短路(出现“亮点”),或者断路(出现“黑点”)。所以说,并不是如此高昂的显示产品并不会出现瑕疵。
LCD显示屏包含了在CRT技术中未曾用到的一些东西。为屏幕提供光源的是盘绕在其背后的荧光管。有些时候,会发现屏幕的某一部分出现异常亮的线条。也可能出现一些不雅的条纹,一幅特殊的浅色或深色图像会对相邻的显示区域造成影响。此外,一些相当精密的图案(比如经抖动处理的图像)可能在液晶显示屏上出现难看的波纹或者干扰纹。
现在,几乎所有的应用于笔记本或桌面系统的LCD都使用薄膜晶体管(TFT)激活液晶层中的单元格。TFT LCD技术能够显示更加清晰,明亮的图像。早期的LCD由于是非主动发光器件,速度低,效率差,对比度小,虽然能够显示清晰的文字,但是在快速显示图像时往往会产生阴影,影响视频的显示效果,因此,如今只被应用于需要黑白显示的掌上电脑,呼机或手机中。
随着技术的日新月异,LCD技术也在不断发展进步。目前各大LCD显示器生产商纷纷加大对LCD的研发费用,力求突破LCD的技术瓶颈,进一步加快LCD显示器的产业化进程、降过滤层的过滤在屏
显示器的显示原理是怎么样的?
原理如下:
1、液晶是一种规则性排列的有机化合物,它是一种介于固体和液体之间的物质,目前一般采用的是分子排列最适合用于制造液晶显示器的nematic细柱型液晶。
2、液晶本身并不能构发光,它主要是通过因为电压的更改产生电场而使液晶分子排列产生变化来显示图像。
液晶面板主要是由两块无钠玻璃夹着一个由偏光板、液晶层和彩色虑光片构成的夹层所组成。
3、偏光板、彩色滤光片决定了有多少光可以通过以及生成何种颜色的光线。液晶被灌在两个制作精良的平面之间构成液晶层,这两个平面上列有许多沟槽,单独平面上的沟槽都是平行的,但是这两个平行的平面上的沟槽却是互相垂直的。
4、简单的说就是后面的平面上的沟槽是纵向排列的话,那么前面的平面就是横向排列的。位于两个平面间液晶分子的排列会形成一个Z轴向90度的逐渐扭曲状态。背光光源即灯管发出的光线通过液
\t\t\t\t\t\t\t\t\t\t\t\t晶显示屏背面的背光板和反光膜,产生均匀的背光光线,这些光线通过后层会被液晶进行Z轴向的扭曲,从而能够通过前层平面。
5、如果给液晶层加电压将会产生一个电场,液晶分子就会重新排列,光线无法扭转从而不能通过前层平面,以此来阻断光线。
6、液晶显示器的缺点在于亮度、画面均匀度、可视角度和反应时间上与CRT显示器有比较明显的差距。其中反应时间和可视角度均取决于液晶面板的质量,画面均匀度和辅助光学模块有很大关系。而液晶显示器的亮度主要取决于背光光源。当然,整个模组的设计也是影响产品亮度的一个因素。
7、不少人在描述亮度单位时,都采用了“流明”,但这事实上是错误的。事实上,“流明”是光通量的单位,而亮度的单位应该是cd/m2(上标)。两者都是用于光学领域的技术参数。发光体单位时间内发出的光量总和称为光通量(luminous flux),物理学上用符号。
8、发光体在特定方向单位立体角单位面积内的光通量称为亮度(luminace),物理学上用L表示,单位为坎德拉每平方米或称平方烛光cd/㎡。亮度是衡量显示器发光强度的重要指标,对于液晶显示器来说,尤为重要。高亮度也就意味着显示器对于其工作的周围环境的抗干扰能力更高,主要针对液晶显示器的TCO'03认证标准也作出了相当高的要求。
9、厂商也不约而同地以高亮度来作为各自产品的卖点之一。一般来说,生产商主要通过增加灯管数量和优化显示屏的内部设计来提高液晶显示器的亮度。
液晶显示器工作原理,(LCD,LED)
(一)液晶的物理特性
液晶的物理特性是:当通电时导通,排列变的有秩序,使光线容易通过;不通电时排列混乱,阻止光线通过。让液晶如闸门般地阻隔或让光线穿透。从技术上简单地说,液晶面板包含了两片相当精致的无钠玻璃素材,称为Substrates,中间夹著一层液晶。当光束通过这层液晶时,液晶本身会排排站立或扭转呈不规则状,因而阻隔或使光束顺利通过。大多数液晶都属于有机复合物,由长棒状的分子构成。在自然状态下,这些棒状分子的长轴大致平行。将液晶倒入一个经精良加工的开槽平面,液晶分子会顺着槽排列,所以假如那些槽非常平行,则各分子也是完全平行的。
(二)单色液晶显示器的原理
LCD技术是把液晶灌入两个列有细槽的平面之间。这两个平面上的槽互相垂直(相交成90度)。也就是说,若一个平面上的分子南北向排列,则另一平面上的分子东西向排列,而位于两个平面之间的分子被强迫进入一种90度扭转的状态。由于光线顺着分子的排列方向传播,所以光线经过液晶时也被扭转90度。但当液晶上加一个电压时,分子便会重新垂直排列,使光线能直射出去,而不发生任何扭转。
LCD是依赖极化滤光器(片)和光线本身。自然光线是朝四面八方随机发散的。极化滤光器实际是一系列越来越细的平行线。这些线形成一张网,阻断不与这些线平行的所有光线。极化滤光器的线正好与第一个垂直,所以能完全阻断那些已经极化的光线。只有两个滤光器的线完全平行,或者光线本身已扭转到与第二个极化滤光器相匹配,光线才得以穿透。
LCD正是由这样两个相互垂直的极化滤光器构成,所以在正常情况下应该阻断所有试图穿透的光线。但是,由于两个滤光器之间充满了扭曲液晶,所以在光线穿出第一个滤光器后,会被液晶分子扭转90度,最后从第二个滤光器中穿出。另一方面,若为液晶加一个电压,分子又会重新排列并完全平行,使光线不再扭转,所以正好被第二个滤光器挡住。总之,加电将光线阻断,不加电则使光线射出。
然而,可以改变LCD中的液晶排列,使光线在加电时射出,而不加电时被阻断。但由于计算机屏幕几乎总是亮着的,所以只有“加电将光线阻断”的方案才能达到最省电的目的。
从液晶显示器的结构来看,无论是笔记本电脑还是桌面系统,采用的LCD显示屏都是由不同部分组成的分层结构。LCD由两块玻璃板构成,厚约1mm,其间由包含有液晶(LC)材料的5μm均匀间隔隔开。因为液晶材料本身并不发光,所以在显示屏两边都设有作为光源的灯管,而在液晶显示屏背面有一块背光板(或称匀光板)和反光膜,背光板是由荧光物质组成的可以发射光线,其作用主要是提供均匀的背景光源。背光板发出的光线在穿过第一层偏振过滤层之后进入包含成千上万水晶液滴的液晶层。液晶层中的水晶液滴都被包含在细小的单元格结构中,一个或多个单元格构成屏幕上的一个像素。在玻璃板与液晶材料之间是透明的电极,电极分为行和列,在行与列的交叉点上,通过改变电压而改变液晶的旋光状态,液晶材料的作用类似于一个个小的光阀。在液晶材料周边是控制电路部分和驱动电路部分。当LCD中的电极产生电场时,液晶分子就会产生扭曲,从而将穿越其中的光线进行有规则的折射,然后经过第二层过滤层的过滤在屏幕上显示出来。
三)彩色LCD显示器的工作原理
对于笔记本电脑或者桌面型的LCD显示器需要采用的更加复杂的彩色显示器而言,还要具备专门处理彩色显示的色彩过滤层。通常,在彩色LCD面板中,每一个像素都是由三个液晶单元格构成,其中每一个单元格前面都分别有红色,绿色,或蓝色的过滤器。这样,通过不同单元格的光线就可以在屏幕上显示出不同的颜色。
LCD克服了CRT体积庞大、耗电和闪烁的缺点,但也同时带来了造价过高、视角不广以及彩色显示不理想等问题。CRT显示可选择一系列分辨率,而且能按屏幕要求加以调整,但LCD屏只含有固定数量的液晶单元,只能在全屏幕使用一种分辨率显示(每个单元就是一个像素)。
CRT通常有三个电子枪,射出的电子流必须精确聚集,否则就得不到清晰的图像显示。但LCD不存在聚焦问题,因为每个液晶单元都是单独开关的。这正是同样一幅图在LCD屏幕上为什么如此清晰的原因。LCD也不必关心刷新频率和闪烁,液晶单元要么开,要么关,所以在40~60Hz这样的低刷新频率下显示的图像不会比75Hz下显示的图像更闪烁。不过,LCD屏的液晶单元会很容易出现暇疵。对1024×768的屏幕来说,每个像素都由三个单元构成,分别负责红、绿和蓝色的显示一所以总共约需240万个单元(1024×768×3=2359296)。很难保证所有这些单元都完好无损。最有可能的是,其中一部分己经短路(出现“亮点”),或者断路(出现“黑点”)。所以说,并不是如此高昂的显示产品并不会出现瑕疵。
LCD显示屏包含了在CRT技术中未曾用到的一些东西。为屏幕提供光源的是盘绕在其背后的荧光管。有些时候,会发现屏幕的某一部分出现异常亮的线条。也可能出现一些不雅的条纹,一幅特殊的浅色或深色图像会对相邻的显示区域造成影响。此外,一些相当精密的图案(比如经抖动处理的图像)可能在液晶显示屏上出现难看的波纹或者干扰纹。
现在,几乎所有的应用于笔记本或桌面系统的LCD都使用薄膜晶体管(TFT)激活液晶层中的单元格。TFT LCD技术能够显示更加清晰,明亮的图象。早期的LCD由于是非主动发光器件,速度低,效率差,对比度小,虽然能够显示清晰的文字,但是在快速显示图象时往往会产生阴影,影响视频的显示效果,因此,如今只被应用于需要黑白显示的掌上电脑,呼机或手机中。
随着技术的日新月异,LCD技术也在不断发展进步。目前各大LCD显示器生产商纷纷加大对LCD的研发费用,力求突破LCD的技术瓶颈,进一步加快LCD显示器的产业化进程、降低生产成本,实现用户可以接受的价格水平。
四)应用与液晶显示器的新技术
(1)采用TFT型Active素子进行驱动
为了创造更优质画面构造,新技术采用了用独有TFT型Active素子进行驱动。大家都知道,异常复杂的液晶显示屏幕中最重要的组成部分除了液晶之外,就要算直接关系到液晶显示亮度的背光屏以及负责产生颜色的色滤光镜。在每一个液晶像素上加装上了Active素子来进行点对点控制,使得显示屏幕与全统的CRT显示屏相比有天壤之别,这种控制模式在显示的精度上,会比以往的控制方式高得多,所以就在CRT显示屏会上出现图像的品质不良,色渗以及抖动非常厉害的现象,但在加入了新技术的LCD显示屏上观看时其画面品质却是相当赏心悦目的。
(2)利用色滤光镜制作工艺创造色彩斑澜的画面
在色滤光镜本体还没被制作成型以前,就先把构成其主体的材料加以染色,之后再加以灌膜制造。这种工艺要求有非常高的制造水准。但与同其他普通的LCD显示屏相比,用这种类型的制造出来的LCD,无论在解析度,色彩特性还是使用的寿命来说,都有着非常优异的表现。从而使LCD能在高分辨率环境下创造色彩斑澜的画面。
(3)低反射液晶显示技术
众所周知,外界光线对液晶显示屏幕具有非常大的干扰,一些LCD显示屏,在外界光线比较强的时候,因为它表面的玻璃板产生反射,而干扰到它的正常显示。因此在室外一些明亮的公共场所使用时其性能和可观性会大大降低。目前很多LCD显示器即使分辨率再高,其反射技术没处理好,由此对实际工作中的应用都是不实用的。单凭一些纯粹的数据,其实是一种有偏差的去引导用户的行为。而新款的LCD显示器就采用的“低反射液晶显示屏幕”技术就是在液晶显示屏的最外层施以反射防止涂装技术(AR coat),有了这一层涂料,液晶显示屏幕所发出的光泽感、液晶显示屏幕本身的透光率、液晶显示屏幕的分辨率、防止反射等这四个方面都但到了更好的改善。
(4)先进的“连续料界结晶矽”液晶显示方式
在一些LCD产品中,在观看动态影片的时候会出现画面的延迟现象,这是由于整个液晶显示屏幕的像素反应速度显得不足所造成的。为了提高像素反应速度,新技术的LCD采用目前最先进的Si TFT液晶显示方式,具有比旧式LCD屏快600倍的像素反应速度,效果真是不可同日而语。先进的“连续料界结晶矽”技术是利用特殊的制造方式,把原有的非结晶型透明矽电极,在以平常速率600倍的速度下进行移动,从而大大加快了液晶屏幕的像素反应速度,减少画面出现的延缓现象。
现在,低温多晶硅技术、反射式液晶材料的研究已经进入应用阶段,也会使LCD的发展进入一个崭新的时代。而在液晶显示器不断发展的同时,其它平面显示器也在进步中,等离子体显示器(PDP)、场致发光阵列显示器(FED)和发光聚合体显示器(LEP)的技术将在未来掀起平板显示器的新浪潮。其中,最值得关注和看好的就是场致显示器,它具有许多比液晶显示器更出色的性能……不过可以断定,LCD显示技术进入新纪元,作为另一支显示产品的生力军,它们将可能取代CRT显示器。
电脑显示器的工作原理是什么
当你接触到一个新设备时,你想弄懂它是如何工作的吗?每一个崇尚技术的硬派高手大概都会对新东西充满好奇心。在我还是小孩子的时候,每当有了新玩具,我总是要拆开它们看看里面的构造。直到今天,我仍然保持着这种“总想看个明白”的爱好。 对每个计算机用户来讲,和他们最亲近的可能要算显示器了。那么你想知道这个成天和你面对面的朋友是怎样工作的吗? 术语 INVAR荫罩,孔径,电子枪。当人们谈论起显示器(或电视)时,总能说出一大堆术语出来,如垂直同步、刷新率、分辨率等。但人们可能只是听说这些模糊不清的名词概念而已,对这些东西具体指什么就不太清楚了。现在,让我们从原理上来深入理解这些术语,从而明白显示器是如何工作的。 阴极射线管 CRT:它是一根真空管,里面有一个或多个电子枪,电子枪射出电子束,电子束射到真空管前表面的内侧时,前表面内侧上的发光涂料受到电子束的击打而发光。 电子枪 显示器的中心处就是电子枪,位于CRT的最底端。从本质上讲,电子枪不过是体积更大、功率更大的二极管。电子在电子枪那儿获得动能,电子到达CRT前表面内侧时撞击萤光粉(磷质)而失去动能,萤光粉受到撞击而发光、发热,这是一个动能向光能、热能的转换过程。 偏转线圈 从电子枪射出的电子束是直线发射的,显示器要成像,电子束必须连续不断地从左到右、从上到下地向DRT前面板发射电子束,那么电子束怎样才能改变发射方向呢?这就需要用到偏转线圈。它能产生强大的、不断变化的磁场,电子束通过该磁场时发生偏转;磁场方向不断变化,电子束就能连续不断地对荧光屏进行扫描。 当电子束射到平面时,图像的左右边缘看起来就有些弯曲。这是因为电子束只能在有限范围内发生偏转,到达荧光屏时会丢失一些目标(萤光粉),于是电子束就会激活离目标最近的萤光粉,这样电子束的目标就从一个增加到数个,因而造成图像边缘看起来就有些“弯曲”(实质上并没弯曲)。 彩色图像的产生 单色CRT显示器只有单独一支电子枪,只能产生黑色或白色图像。我们通常所说的彩色显示器、彩色电视机都有三支电子枪,分别发射红色、蓝色和绿色电子束。我们知道,红、蓝、绿三种色彩混合,改变它们各自比例就能产生不同色彩。彩色显示器、彩色电视机也是同样的道理,改变电子束的发射强度,也就改变了红、蓝、绿三种颜色各自所占的比例,就能产生不同的色彩。 电子枪的数量增加了,随之而来的后果是分辨率的降低。在过去,由于技术和成本的原因,三支电子枪只能共用一个偏转线圈,所以彩色显示器的分辨率反而比单色显示器要低。现在不同了,现在的彩色显示器都是三支电子枪各拥有一个自己的偏转线圈,不仅分辨率比过去更高,而且能生成1600万种色彩。 回程转换器 电子束的扫描是顺序是从左到右、从上到下的,当电子束扫完从一端到另一端的扫描路线后,需要回到起始方向再进行下一次扫描,这项返回工作由回程转换器完成。回程转换器的工作特点与引擎点火线圈很相似。在电子束扫描过程中,回程转换器输入低电压,把电能转换成磁场能并贮存在其中;当电子束走完一次路线后,回程转换器切断输入电压,并在瞬间把磁场能转换成电能进行放电,放电时的电压是非常高的,它为偏转线圈在返回电子束到起始方向时提供高电压。 垂直和水平同步 有了电子枪、偏转线圈、回程转换器等器件后,显示器是如何让它们协同工作的呢?这些器件都必须同步工作。在CRT中,需要应用两种同步信号:一种是水平同步信号,它决定了CRT在屏幕上从左到右扫描一条信号线所需的时间;另一种是垂直同步信号,它决定了CRT在屏幕上从上到下再返回到开始位置扫描所需的时间。 描绘一幅图像涉及到2个重要参数:描完一条线所需的时间和绘完整个帧(也就是整幅屏幕大小的图像)所需的时间,前者由水平同步信号决定,后者由垂直同步信号决定,也就是通常所说的刷新率。现在的显卡都能为显示器提供合适的水平和垂直同步信号。显示器接收到显卡传来的信号后,内部电路就开始工作,如发射电子束、磁场偏转、击打发光涂料。 在显示器内部,有一些振荡电路。人们通常所说的刷新频率,指的就是振荡电路的频率。刷新频率的计算公式是:水平同步扫描线X帧频=刷新频率。普通显示器的刷新频率在15.75kHz-95kHz间。15.75kHz是人体对显示器最低要求的刷新频率,是由525(线)X30(fps)=15.75kHz计算所得。由此,我们可以逆推出显示器扫描一条水平线所花的时间:众所周知,时间和频率是倒数关系,即1/频率=时间。在这里,1/15.75kHz=63.5us(微秒),也就是说在每帧525线、每秒30帧的模式下,显示器扫描一条水平线所花的时间是63.5微秒。 如果我们再追根究底,就会问这个525线又是怎么来的呢?很简单,前面已经介绍了垂直同步信号从上到下扫描完一条竖线后,必须再回到起始位置进行下一次扫描。在这过程中,电子枪关闭,回程转换器放电。525就是指垂直同步信号从终点回到起点、又从起点到终点重复的次数。比如,在63.5微秒这段时间内,显示器需完成1帧画面的描绘工作,那么电子枪从上到下、从左到右要扫描525次。 隔行扫描 显示器显示的画面,无论是动态还是静态的,都是重复显示的。别以为静态画面显示器只显示“一次”,实际上在这段时间内已经显示了n次,只不过重复显示的画面是相同的,我们感觉不到显示器是在重复显示。如果重复显示的画面有差异,则画面就开始动起来了。动画片也是由这个原理制作出来的。 在播放动态图像的时候,由于上一帧和下一帧的画面不相同,连续显示时我们就会觉察到画面是“抖动”的,或者说不平滑,看上去很不舒服。那么怎样来消除抖动呢?有人说,把刷新率提高不就行了吗?事实上,这并不通用,而且有更简单的方法去实现。 CRT显示器在描绘整个帧的画面时,分2个步骤进行。首先扫描完所有奇数行(从上到下所有水平线定义为奇数行或偶数行),再扫描所有偶数行。采用隔行扫描方式,不仅有效减小了画面的抖动感,而且避免了电子枪高频工作带来的老化问题。 耐久性 CRT采用的发光涂料是固态磷质晶体。尽管CRT名义上称是真空管,但世上怎能做到绝对的真空?因此,磷晶体在电子束长期的击打下,会发生老化。老化的后果就是亮度降低,所以我们经常就会看到自己用上了年头的显示器的色彩没有别人新买的亮丽。 荫罩板 为了增加显示亮度,我们不得不增加电子枪的电流强度。但随之而来的问题是,加快了磷晶体的发热,磷晶体在温度高的条件下显示是模糊的,而且也加快了它的老化。怎样解决这个矛盾呢?这就用到了荫罩板。 荫罩板上有许多微小细孔,孔的大小和数量决定了显示的清晰程度。如今,荫罩板已经从点状面板演变到了沟状面板。面板的形状也从球形、柱形演变到了“纯平面”。如今纯平面被市场炒得火热,但它再怎么变也是荫罩板。为尽量吸收显示时所产生的热量,多数荫罩板采用了镍/铁合金。 液晶显示器 LCD显示器的历史也算相当悠久的了,由于天生的缺陷,LCD显示器的图像画质没有标准CRT显示器那么清晰,但体积比CRT显示器轻巧得多,耗电量也要小些,所以LCD显示器多用于便携机上。另外,LCD显示器不仅价格要比CRT显示器贵2-4倍,而且通常屏幕都比较小,这也是制约LCD显示器在台式系统中流行起来的原因。 总结 毫无疑问,显示器的工作原理是复杂的,但只有明白这些基本原理后,你才会明白为什么高档显示器比低档显示器买得贵,并不仅仅是因为屏幕尺寸的大小,更多是由于采用了不同的技术。 从发明至今,CRT显示器已经走过了漫漫50年的时间。其实,不管什么纯平面、黄金眼、短管等的闪亮登场,CRT显示器始终逃离不了CRT的基本工作原理。如果你知道了工作原理,这些看上去很新潮的技术,其实并不神秘! 当然,无可否认的是,应用了这些很新潮的技术,现在的显示器肯定比10年前的显示器更漂亮、更绚丽,也更利于环保和更廉价。在这应用第一、利润至上的商业化时代,在某些领域,只要求人们掌握技术、懂得怎么用就OK,而并不一定要求懂什么原理。这是一个富有的社会,却也是一个短视的社会。朋友,多多了解有关原理的东西吧!
求采纳