AIGC和ChatGPT什么关系很多人对这个问题比较感兴趣,下面让我们一起来看DriveGPT雪湖·海若诞生,将重塑汽车智能化技术路线,希望可以帮助到你。
DriveGPT雪湖·海若诞生,将重塑汽车智能化技术路线
和 ChatGPT 在 AIGC(AI- Generated Content,人工智能生成内容)领域一样具备颠覆性的事情正在发生。
4 月 11 日,自动驾驶技术公司毫末智行在其第八届 HAOMO AI DAY 上,重磅发布行业首个自动驾驶生成式大模型 DriveGPT,中文名「雪湖·海若」,该模型参数规模达到 1200 亿,可用于解决自动驾驶研发过程中困扰已久的认知决策问题,并通过能力迭代,最终实现端到端自动驾驶。
此前,受制于传统模型「数据量小、基于规则」等局限性,智能驾驶技术进展一度较为缓慢,甚至不少从业者都对未来产生了自我怀疑,在这样的背景下,两年前,毫末率先投入到大模型技术的研发之中,旨在寻找新的突破。
经历了先行探索和反复验证,毫末成功找到了突破口——生成式大模型,通过在行业首个将 GPT 落地到自动驾驶领域,大大加速了更高阶智能驾驶的落地应用。
「生成式大模型将成为自动驾驶系统进化的关键,基于 Transformer 大模型训练的感知、认知算法会逐步在车端进行落地部署。」毫末董事长张凯在 HAOMO AI DAY 上对行业未来发展趋势作出论断。
毫末 CEO 顾维灏也表示:「DriveGPT 雪湖·海若将会重塑汽车智能化技术路线,让辅助驾驶进化更快,让自动驾驶更早到来。」
顾维灏在自动驾驶技术领域的眼光独到,布局非常领先。
事实上,毫末在 2021 年就已经开始了 Transformer 大模型技术的探索,并快速落地应用到 BEV 视觉感知算法当中,然后又以五大模型的方式来实现自动驾驶感知、认知算法的快速升级,现在这些大模型将统一到 DriveGPT 生成式大模型当中,目标将实现端到端自动驾驶。
毫末的探索始终走在行业技术探索的前列。
据了解,新摩卡 DHT-PHEV 即将首发搭载 DriveGPT 雪湖·海若量产上市,届时,用户市场还将迎来一轮新的震撼。
「毫末真正重塑了行业信心,」一位业内人士略微激动地说道,「这将是一场革命。」
01、DriveGPT 雪湖·海若,如何颠覆智能驾驶
在介绍 DriveGPT 雪湖·海若之前,先回顾一下 ChatGPT 的概念,其全称是 Chat Generative Pre-trained Transformer,字面意思是用于聊天的生成式预训练 Transformer 大模型。
其中 Transformer 是 ChatGPT 的重点,最早由谷歌在 2017 年提出,该模型基于注意力机制的设计,可以实现出色的算法并行性,因而迅速在自然语言处理(NLP) 领域流行起来,ChatGPT 就是其最新成果。
Transformer 大模型对于智能驾驶来说也不陌生,在 NLP 中奠定了核心地位之后,被逐渐被引入计算机视觉(CV)领域,后又被特斯拉、毫末智行等行业龙头先行引入自动驾驶系统中,用于提升感知端的模型效果。
如今,毫末在 Transformer 大模型的应用上更进一步,将其率先拓展到智能驾驶系统认知端,DriveGPT 雪湖·海若由此诞生。
从同样使用 Transformer 大模型的角度来说,ChatGPT 和 DriveGPT 雪湖·海若属于同宗同源。
其中,ChatGPT 是对话式的生成式自然语言模型,输入是自然语言的文本串,输出是自然语言的文本,可以完成通用的下游语言生成任务,比如多轮对话、代码生成、翻译、数学 运算等能力。
而毫末 DriveGPT 雪湖·海若是用于自动驾驶场景的生成式大模型,输入是感知融合后的文本序列,输出是自动驾驶场景文本序列,即将自动驾驶场景 Token 化,形成「Drive Language」,最终完成自车的决策规控、障碍物预测以及决策逻辑链的输出等任务。
DriveGPT 雪湖·海若首先在预训练阶段通过引入量产驾驶数据,训练初始模型,再通过引入驾驶接管 Clips 数据完成反馈模型 (Reward Model) 的训练,然后再通过强化学习的方式,使用反馈模型去不断优化迭代初始模型,形成对自动驾驶认知决策模型的持续优化。
具体来说,DriveGPT 雪湖·海若会通过人类反馈强化学习的方式进行迭代,用 DriveGPT 雪湖·海若最新模型 (Active Model) 对真实场景 Case 做生成,产出多种场景序列结果,再用反馈模型给这些结果进行打分排序,目标是把好的结果排上来,差的结果排下去,然后与初始模型 (Pretrain-Model) 的生成概率做比较,放大比分。最后通过强化学习的方式将参数再次更新到最新模型 (Active Model) 中,一直反复这个迭代过程。
其中,Reward Model(反馈模型) 的训练过程是独立的,使用带有偏序关系的 Pair 样本对来训练,这些样本对来自于接管 Case,毫末将与人类驾驶结果相似的模型结果作为正样本,与被接管轨迹相似的作为负样本,这样来构建偏序对集合,再利用 LTR(Learning To Rank) 的思路去训练 Reward Model,进而得到一个打分模型。
此外,DriveGPT 雪湖·海若还可以输出决策逻辑链:即在输入端提供 Prompts(提示语),根据提示输出含有决策逻辑链 (Chain of Thought) 的未来序列。
毫末 CSS 自动驾驶场景库是CoT 的重要输入,拥有超过几十万个细颗粒度场景,将 Prompt 提示语和完整决策过程的样本交给模型去学习,学到推理关系,从而将完整驾驶策略拆分为自动驾驶场景的动态识别过程,完成可理解、可解释的推理逻辑链生成。
除了用作认知决策,DriveGPT 雪湖·海若还可以逐步应用到城市 NOH、捷径推荐、智能陪练以及脱困场景中。
有了 DriveGPT 雪湖·海若的加持,车辆行驶会更安全;动作更人性、更丝滑,并有合理的逻辑告诉驾驶者,车辆为何选择这样的决策动作。
对于普通用户来说,车辆越来越像老司机,用户对智能产品的信任感会更强,理解到车辆的行为都是可预期、可理解的。
尽管 DriveGPT 雪湖·海若刚出世就拥有强大的功能,但这还不是它的「终局」,毫末对于 DriveGPT 雪湖·海若的目标是实现端到端自动驾驶,后续毫末会持续将多个大模型的能力整合到 DriveGPT 雪湖·海若中。
与此同时,毫末也对外构建 DriveGPT 雪湖·海若生态,通过对行业提供开放服务,促进自动驾驶的从业者和研究机构,快速构建基础能力,释放创新。
汽车之心获知,毫末 DriveGPT 雪湖·海若首批定向邀请了北京交通大学计算机与信息技术学院、高通、火山引擎、华为云、京东科技、四维图新、魏牌新能源、英特尔等加入。
事实上,毫末对于大模型的开放从 DriveGPT 雪湖·海若的中文名「雪湖·海若」即可窥见。
据了解,「海若」一词出自《庄子·秋水》中的神话人物北海若,在该书中,另一神话人物河伯请教北海若,何谓大小之分,北海若教导河伯说,不因天地而觉大,不因毫末而觉小。
毫末据此把 DriveGPT 中文名命名为「海若」,寓意着智慧包容、海纳百川,为行业发展贡献力量。
02、自动驾驶生成式大模型「第一枪」,为何由毫末打响
自动驾驶领域顶级玩家众多,毫末凭何在全球首个推出了自动驾驶生成式大模型 DriveGPT 雪湖·海若?
要回答这个问题,首先要理清楚毫末 DriveGPT 雪湖·海若的本质,它是应用在智能驾驶上的人工智能,就必然离不开人工智能三要素:算法、数据和算力,而这三者恰恰是毫末具备领先性优势的地方。
首先在算法的技术路线上,毫末早早就坚定选择走渐进式发展路线,比「跃进式」玩家的量产时间更早,更快形成规模化,从用户真实使用场景中积累足够多的数据。
毫末还清晰地提出了从自动驾驶 1.0 时代到自动驾驶 3.0 时代的演进路径,并率先进入以数据驱动为核心的新时代。
从这时开始,自动驾驶获取的数据量与数据多样性将呈现指数级膨胀,在深度学习主导中,与大模型相辅相成,真正去解决自动驾驶最后的长尾难题。
在 2021 年 12 月第四届 HAOMO AI DAY 上,毫末发布中国首个数据智能体系 MANA,其由四大板块组成,分别是 TARS、LUCAS、VENUS 和 BASE。
其中,BASE 是整个系统架构的底层,包括数据底座、数据融合、PoseidonOS 等。
其他三大板块置于上层:
TARS 代表毫末智行的开发的原型算法,包括感知、规划决策、地图定位、仿真引擎;LUCAS 是提取数据价值,以数据驱动系统能力持续迭代的核心子系统,解决场景泛化,评测和部署的问题;VENUS 则是数据看板,以参考标准评价算法的好坏。<span style
【本文来自易车号作者汽车之心,版权归作者所有,任何形式转载请联系作者。内容仅代表作者观点,与易车无关】
aⅠgc是什么概念
AIGC是人工智能技术自动生成内容,与ChatGPT同属于AI概念的延伸。
早在2018年,由AI绘制的《艾德蒙.贝拉米》就拍出了43万美元的天价!AIGC可广泛应用于文字创作、图像创作、视频创作、音频剪辑、游戏开发、代码生成等领域!这轮AIGC出圈,一方面是受益于AI画作《太空歌剧院》(上图)摘得金奖,另一方面是春节期间上映的《流浪地球2》,和热播电视剧《三体》中人工智能的惊艳表现!
微软宣布将ChatGPT整合进搜索引擎Bing,并考虑向OpenAI注资100亿美元。百度宣布进军ChatGPT,拟推出人工智能聊天机器人服务。注:ChatGPT是OpenAI开发的聊天机器人模型!
不管是AIGC还是ChatGPT功能实现和应用都需要强大的算力、高效的算法和高质量的数据支撑,人工智能正变得更加“智能”,从最早的被动应答走向主动的内容输出,逐步进入实际应用领域,例如OpenAI的ChatGPT,科大讯飞的语音翻译,新能源车的自动驾驶都属于人工智能的初期应用。《三体》中的智子,和《流浪地球2》中的MOSS,则是人工智能发展的终极目标!可以持续关注相关概念:云计算、计算机、AI芯片、数据中心!
人机交互发展的趋势
chatgpt不会取代程序员。
chatgpt终究只是ai人工智能,在未来它即使学会编程也无法掌握所有程序员的技能和知识,硬要说的话只是会影响到一些技术水平较差的程序员。
事实上在科技发展的过程中,总是会有机器取代人工的声音出现,这一现象从工业革命就开始了,不过新的科技和产业自然也带来了新的职业,因此完全不需要担心失业的问题。在未来
ChatGPT出圈企业入局
资料显示,ChatGPT是美国OpenAI公司于2022年11月30日推出的一款对话式AI模型,该模型使用一定的算法以及大量文本训练,只需向ChatGPT文字提出需求,即可让其完成回答问题、书写代码、创作文本等指令。
实际应用上,ChatGPT等文本AI可能帮助文本创造类行业完成智能内容生成,并一定程度上替代搜索引擎。
而ChatGPT一经推出便在人工智能生成内容(AIGC)领域上引起轰动——上线五天,就吸引了超100万用户。上线两个多月,月活用户就达到了1亿。这用户增长速度目前堪称是“前无古人”,在未来要知道当年火爆的instagram用户数增长到1亿也用了两年半时间。
值得注意的是,它之所以这么火,主要在于ChatGPT功能强大,应用广泛,是潜在的蓝海。
在未来在未来
caht gpt全称
caht gpt全称:Chat Generative Pre-trained Transformer
1. chatGPT介绍
chatGPT是由OpenAI开发的一个人工智能聊天机器人程序,于2022年11月推出。该程序使用基于GPT-3.5架构的大型语言模型并通过强化学习进行训练。
ChatGPT目前仍以文字方式交互,而除了可以通过人类自然对话方式进行交互,还可以用于相对复杂的语言工作,包括自动文本生成、自动问答、自动摘要等在内的多种任务。
如:在自动文本生成方面,ChatGPT可以根据输入的文本自动生成类似的文本(剧本、歌曲、企划等),在自动问答方面,ChatGPT可以根据输入的问题自动生成答案。还具有编写和调试计算机程序的能力。
在推广期间,所有人可以免费注册,并在登录后免费使用ChatGPT实现与AI机器人对话。
ChatGPT可以写出相似于真人程度的文章,并因其在许多知识领域给出详细的回答和清晰的答案而迅速获得关注,证明了从前认为不会被AI取代的知识型工作它也足以胜任,对于金融与白领人力市场的冲击相当大,但其事实准确性参差不齐被认为是一重大缺陷,
其基于意识形态的模型训练结果并被认为需要小心地校正。ChatGPT于2022年11月发布后,OpenAI估值已涨至290亿美元[7]。上线两个月后,用户数量达到1亿。
2. chatGPT如何训练数据
ChatGPT使用基于人类反馈的监督学习和强化学习在 GPT-3.5 之上进行了微调。这两种方法都使用了人类训练员来提高模型的性能, 通过人类干预以增强机器学习的效果,从而获得更为逼真的结果。
在监督学习的情况下,模型被提供了这样一些对话, 在对话中训练师j充当用户和AI助理两种角色。在强化步骤中,人类训练员首先对模型在先前对话中创建的响应进行评级。
这些级别用于创建“奖励模型”, 使用近端策略优化(Proximal Policy Optimization-PPO)的多次迭代进一步微调。
这种策略优化算法比信任域策略优化(trust region policy optimization)算法更为高效。这些模型是与 Microsoft合作,在其Microsoft Azure超级计算基础设施上训练的。
此外,OpenAI继续从ChatGPT用户那里收集数据,这些数据可用于进一步训练和微调 ChatGPT。 允许用户对他们从ChatGPT收到的回复投赞成票或反对票;在投赞成票或反对票时,他们还可以填写一个带有额外反馈的文本字段。
ChatGPT的训练数据包括各种文档以及关于互联网、编程语言等各类知识,如BBS和Python编程语言。
关于ChatGPT编写和调试计算机程序的能力的训练, 由于深度学习模型不懂编程,与所有其他基于深度学习的语言模型一样,只是在获取代码片段之间的统计相关性。