星光电脑为您整理了太阳能电池实验报告,还有太阳能电池特性测定实验报告和太阳能电池基本特性测定实验实验总结,下面一起来看大学物理实验报告(太阳能电池特性的测定及电阻的测量)答案吧。
太阳能电池基本特性测定实验实验总结
如下:
在实际的太阳能电池中,太阳能电池本身还有电阻,一类是由于导体材料的体电阻、金属电极与半导体材料的接触电阻、扩散层横向电阻以及金属电极本身的电阻四个部分产生的串联电阻Rs,Rs通常小于1Q。
另一类是由于电池表面污染、半导体晶体缺陷引起的边缘漏电或耗尽区内的复合电流等原因产生的旁路电阻Rsh,一般为几千欧姆。
介绍
太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染。
太阳能电池根据所用材料的不同,可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池四大类,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。
太阳能电池特性测定实验报告
一、实验目的
1、了解太阳电池的基本结构及基本原理
2、研究太阳电池的基本特性:太阳电池的开路电压和短路电流以及它们与入射光强度的关系;太阳电池的输出伏安特性等。
二、实验仪器
YJ-TYN-1太阳电池基本特性测量仪、光源、负载电阻箱
三、实验原理
1、太阳电池基本结构
太阳电池用半导体材料制成,多为面结合PN结型,靠PN结的光生伏特效应产生电动势。常见的有太阳电池和硒光电池。
在纯度很高、厚度很薄(0.4mm)的N型半导体材料薄片的表面,采用高温扩散法把硼扩散到硅片表面极薄一层内形成P层,位于较深处的N层保持不变,在硼所扩散到的最深处形成PN结。从P层和N层分别引出正电极和负电极,上表面涂有一层防反射膜,其形状有圆形、方形、长方形,也有半圆形。
2、太阳电池的基本原理
当两种不同类型的半导体结合形成PN结时,由于分界层(pn结)两边存在着载流子浓度的突变,必将导致电子从N区向P区和空穴从P区向N区扩散运动,扩散结果将在PN结附近产生空间电荷聚集区,从而形成一个由N区指向P区的内电场。当有光照射到PN结上时,具有一定能量的光子,会激发出电子-空穴对。这样,在内部电场的作用下,电子被拉向N区,而空穴被拉向P区。结果在P区空穴数目增加而带正电,在N区电子数目增加而带负电,在PN结两端产生了光生电动势,这就是太阳电池的光生电压。若太阳电池接有负载,电路中就有电流产生。这就是太阳电池的基本工作原理。
单体太阳电池在阳光照射下,其电动势为0.5~0.6V,最佳负荷状态工作电压为0.4~0.5V,根据需要可将多个太阳电池串并联使用。
3、太阳电池的光电转换效率
太阳电池在实现光电转换时,并非所有照射在电池表面的光能全部被转换为电能。例如,在太阳照射下,太阳电池转换效率最高,但目前也仅达22%左右。其原因有多种,如:反射损失;波长过长的光(光子能量小)不能激发电子空穴对,波长过短的光固然能激发电子空穴对,但能量再大,一个光子也只能激发一个电子空穴对;在离PN结较远处被激发的电子空穴对会自行重新复合,对电动势无贡献;内部和表面存在晶格缺陷会使电子空穴对重新复合;光电流通过PN结时会有漏电等。
4、太阳电池的基本特性
(1
太阳能电池的基本特性测定实验报告的数据处理和图像
误差分析:
一。系统误差:
(1).电流表与电压表内阻以及导线内阻接触电阻对实验的影响;
(2).最小二乘法拟合中对I0的忽略导致的误差;
(3).因为导线的接入导致遮光罩没有完全密封;
(4).万用表及变阻箱造成的误差.
(5).导线的接入电阻.
二。随机误差:
(1).万用表读数不稳定;
(2).导线的接入电阻;
(3).温度及电源电压的频繁波动;
(4).实验台面有微小振动导致光强并不恒定;
(5).光源自身功率并非绝对恒定造成的误差.
大学物理实验报告(太阳能电池特性的测定及电阻的测量)答案
1.测量的短路电流与光照强度不能完全正比的原因
2.太阳能电池在使用时能否光照强度和短路电流基本是成线性的,
2。太阳能电池当然可以短路,它跟普通
太阳能电池特性研究实验报告思考题
1.一般需要再有效光照之上比如200W/㎡以上,光照强度和短路电流基本是成线性的, 2。太阳能电池当然可以短路,它跟普通电池的原理不一样,不是内部反应产生电能,只是把射入的光转化成电能的器件,可以理解为一个中间的转换装置。